Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Ecotoxicol Environ Saf ; 270: 115808, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38198896

RESUMEN

Despite various plans to rationalize antibiotic use, antibiotic resistance in environmental bacteria is increasing due to the accumulation of antibiotic residues in the environment. This study aimed to test the ability of basidiomycete fungal strains to biotransform the antibiotic levofloxacin, a widely-used third-generation broad-spectrum fluoroquinolone, and to propose enzyme targets potentially involved in this biotransformation. The biotransformation process was performed using fungal strains. Levofloxacin biotransformation reached 100% after 9 days of culture with Porostereum spadiceum BS34. Using genomics and proteomics analyses coupled with activity tests, we showed that P. spadiceum produces several heme-peroxidases together with H2O2-producing enzymes that could be involved in the antibiotic biotransformation process. Using UV and high-resolution mass spectrometry, we were able to detect five levofloxacin degradation products. Their putative identity based on their MS2 fragmentation patterns led to the conclusion that the piperazine moiety was the main target of oxidative modification of levofloxacin by P. spadiceum, leading to a decrease in antibiotic activity.


Asunto(s)
Peróxido de Hidrógeno , Levofloxacino , Polyporales , Antibacterianos/química , Fluoroquinolonas/química , Hongos/metabolismo
4.
ACS Cent Sci ; 9(11): 2084-2095, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38033807

RESUMEN

Analyzing the chemical composition of seawater to understand its influence on ecosystem functions is a long-lasting challenge due to the inherent complexity and dynamic nature of marine environments. Describing the intricate chemistry of seawater requires optimal in situ sampling. Here is presented a novel underwater hand-held solid-phase extraction device, I-SMEL (In Situ Marine moleculELogger), which aims to concentrate diluted molecules from large volumes of seawater in a delimited zone targeting keystone benthic species. Marine benthic holobionts, such as sponges, can impact the chemical composition of their surroundings possibly through the production and release of their specialized metabolites, hence termed exometabolites (EMs). I-SMEL was deployed in a sponge-dominated Mediterranean ecosystem at a 15 m depth. Untargeted MS-based metabolomics was performed on enriched EM extracts and showed (1) the chemical diversity of enriched seawater metabolites and (2) reproducible recovery and enrichment of specialized sponge EMs such as aerothionin, demethylfurospongin-4, and longamide B methyl ester. These EMs constitute the chemical identity of each targeted species: Aplysina cavernicola, Spongia officinalis, and Agelas oroides, respectively. I-SMEL concentrated sponge EMs from 10 L of water in a 10 min sampling time. The present proof of concept with I-SMEL opens new research perspectives in marine chemical ecology and sets the stage for further sustainable efforts in natural product chemistry.

5.
ACS Omega ; 7(47): 43068-43083, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36467926

RESUMEN

Sponges are prolific producers of specialized metabolites with unique structural scaffolds. Their chemical diversity has always inspired natural product chemists working in drug discovery. As part of their metabolic filter-feeding activities, sponges are known to release molecules, possibly including their specialized metabolites. These released "Exo-Metabolites" (EMs) may be considered as new chemical reservoirs that could be collected from the water column while preserving marine biodiversity. The present work aims to determine the proportion and diversity of specialized EMs released by the sponge Aplysina cavernicola (Vacelet 1959). This Mediterranean sponge produces bromo-spiroisoxazoline alkaloids that are widely distributed in the Aplysinidae family. Aquarium experiments were designed to facilitate a continuous concentration of dissolved and diluted metabolites from the seawater around the sponges. Mass Spectrometry (MS)-based metabolomics combined with a dereplication pipeline were performed to investigate the proportion and identity of brominated alkaloids released as EMs. Chemometric analysis revealed that brominated features represented 12% of the total sponge's EM features. Consequently, a total of 13 bromotyrosine alkaloids were reproducibly detected as EMs. The most abundant ones were aerothionin, purealidin L, aerophobin 1, and a new structural congener, herein named aplysine 1. Their structural identity was confirmed by NMR analyses following their isolation. MS-based quantification indicated that these major brominated EMs represented up to 1.0 ± 0.3% w/w of the concentrated seawater extract. This analytical workflow and collected results will serve as a stepping stone to characterize the composition of A. cavernicola's EMs and those released by other sponges through in situ experiments, leading to further evaluate the biological properties of such EMs.

6.
Plants (Basel) ; 11(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36235332

RESUMEN

Mangroves are the only forests located at the sea-land interface in tropical and subtropical regions. They are key elements of tropical coastal ecosystems, providing numerous ecosystem services. Among them is the production of specialized metabolites by mangroves and their potential use in agriculture to limit weed growth in cultures. We explored the in vitro allelopathic potential of eight mangrove species' aqueous leaf extracts (Avicennia marina, Kandelia obovata, Bruguiera gymnorhiza, Sonneratia apetala, Sonneratia caseolaris, Aegiceras corniculatum, Lumnitzera racemosa and Rhizophora stylosa) on the germination and growth of Echinochloa crus-galli, a weed species associated with rice, Oryza sativa. Leaf methanolic extracts of mangrove species were also studied via UHPLC-ESI/qToF to compare their metabolite fingerprints. Our results highlight that A. corniculatum and S. apetala negatively affected E. crus-galli development with a stimulating effect or no effect on O. sativa. Phytochemical investigations of A. corniculatum allowed us to putatively annotate three flavonoids and two saponins. For S. apetala, three flavonoids, a tannin and two unusual sulfated ellagic acid derivatives were found. Some of these compounds are described for the first time in these species. Overall, A. corniculatum and S. apetala leaves are proposed as promising natural alternatives against E. crus-galli and should be further assessed under field conditions.

7.
J Chem Ecol ; 48(9-10): 761-771, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36100819

RESUMEN

Climate change constitutes a major challenge for marine urban ecosystems and ocean warming will likely strongly affect local communities. Non-Indigenous Species (NIS) have been shown to often have higher heat resistance than natives, but studies investigating how forthcoming global warming might affect them in marine urban environments remain scarce, especially in Situ studies. Here we used an in Situ warming experiment in a NW Mediterranean (warm temperate) and a NE Atlantic (cold temperate) marina to see how global warming might affect recruited communities in the near future. In both marinas, warming resulted in significantly different community structure, lower biomass, and more empty space compared to control. However, while in the warm temperate marina, NIS showed an increased surface cover, it was reduced in the cold temperate one. Metabolomic analyses on Bugula neritina in the Atlantic marina revealed potential heat stress experienced by this introduced bryozoan and a potential link between heat stress and the expression of a halogenated alkaloid, Caelestine A. The present results might indicate that the effects of global warming on the prevalence of NIS may differ between geographical provinces, which could be investigated by larger scale studies.


Asunto(s)
Cambio Climático , Ecosistema , Biomasa , Temperatura
8.
J Fungi (Basel) ; 8(9)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36135690

RESUMEN

The wastewater from hospitals, pharmaceutical industries and more generally human and animal dejections leads to environmental releases of antibiotics that cause severe problems for all living organisms. The aim of this study was to investigate the capacity of three fungal strains to biotransform the fluoroquinolone levofloxacin. The degradation processes were analyzed in solid and liquid media. Among the three fungal strains tested, Coriolopsis gallica strain CLBE55 (BRFM 3473) showed the highest removal efficiency, with a 15% decrease in antibiogram zone of inhibition for Escherichia coli cultured in solid medium and 25% degradation of the antibiotic in liquid medium based on high-performance liquid chromatography (HPLC). Proteomic analysis suggested that laccases and dye-decolorizing peroxidases such as extracellular enzymes could be involved in levofloxacin degradation, with a putative major role for laccases. Degradation products were proposed based on mass spectrometry analysis, and annotation suggested that the main product of biotransformation of levofloxacin by Coriolopsis gallica is an N-oxidized derivative.

9.
Sci Total Environ ; 838(Pt 1): 155911, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35577087

RESUMEN

Urbanization of coastal habitats, of which harbors and marinas are the paragon, has led to various ecological paradigms about their functioning. Harbor infrastructures offer new hard substrata that are colonized by a wide variety of organisms (biofouling) including many introduced species. These structures also modify hydrodynamism and contaminant dispersal, leading to strong disturbance gradients within them. Differences in sessile community structure have previously been correlated to these gradients at small spatial scale (<100 m). Local adaptation might be involved to explain such results, but as correlation is not causation, the present study aims to understand the causal link between the environmental gradients and community structure through a reciprocal transplant experiment among three sites of a marina (inner, middle, entrance). Our results highlighted strong small-scale spatial variations of contaminants (trace metals, PCB, pesticides, and PAH) in sediments and animal samples which have been causally linked to changes in community composition after transplant. But historical contingency and colonization succession also play an important role. Our results provided strong evidence for local adaptation since community structure, respiration, and pollutant uptake in Bugula neritina, as well as the metabolomes of B. neritina and Ciona intestinalis were impacted by the transplant with a disadvantage for individuals transplanted from the entrance to the inner location. The here observed results may thus indicate that the disturbance gradient in marinas might constitute a staple for selecting pollutant-resistant species and populations, causing local adaptation. This highlights the importance of conducting further studies into small scale local adaptation.


Asunto(s)
Ecosistema , Contaminantes Ambientales , Adaptación Fisiológica , Animales , Especies Introducidas , Urbanización
10.
Metabolites ; 12(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35448494

RESUMEN

The intensification of summer drought expected with climate change can induce metabolism modifications in plants to face such constraints. In this experiment, we used both a targeted approach focused on flavonoids, as well as an untargeted approach, to study a broader fraction of the leaf metabolome of Quercus pubescens exposed to amplified drought. A forest site equipped with a rainfall exclusion device allowed reduction of natural rainfall by ~30% over the tree canopy. Leaves of natural drought (ND) and amplified drought (AD) plots were collected over three seasonal cycles (spring, summer, and autumn) in 2013 (the second year of rain exclusion), 2014, and 2015. As expected, Q. pubescens metabolome followed a seasonal course. In the summer of 2015, the leaf metabolome presented a shifted and early autumnal pattern because of harsher conditions during this year. Despite low metabolic modification at the global scale, our results demonstrated that 75% of Quercus metabolites were upregulated in springs when trees were exposed to AD, whereas 60 to 73% of metabolites (93% in summer 2015), such as kaempferols and quercetins, were downregulated in summers/autumns. Juglanin, a kaempferol pentoside, as well as rhododendrin derivatives, were upregulated throughout the year, suggesting an antioxidant ability of these metabolites. Those changes in terms of phenology and leaf chemistry could, in the end, affect the ecosystem functioning.

11.
Mar Drugs ; 20(3)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35323485

RESUMEN

The biological screening of 44 marine sponge extracts for the research of bioactive molecules, with potential application in the treatment of age-related diseases (cancer and Alzheimer's disease) and skin aging, resulted in the selection of Scopalina hapalia extract for chemical study. As no reports of secondary metabolites of S. hapalia were found in the literature, we undertook this research to further extend current knowledge of Scopalina chemistry. The investigation of this species led to the discovery of four new compounds: two butenolides sinularone J (1) and sinularone K (2), one phospholipid 1-O-octadecyl-2-pentanoyl-sn-glycero-3-phosphocholine (3) and one lysophospholipid 1-O-(3-methoxy-tetradecanoyl)-sn-glycero-3-phosphocholine (4) alongside with known lysophospholipids (5 and 6), alkylglycerols (7-10), epidioxysterols (11 and 12) and diketopiperazines (13 and 14). The structure elucidation of the new metabolites (1-4) was determined by detailed spectroscopic analysis, including 1D and 2D NMR as well as mass spectrometry. Molecular networking was also explored to complement classical investigation and unravel the chemical classes within this species. GNPS analysis provided further information on potential metabolites with additional bioactive natural compounds predicted.


Asunto(s)
4-Butirolactona/análogos & derivados , Productos Biológicos , Fosfolípidos , Piperazinas , Poríferos/química , 4-Butirolactona/química , 4-Butirolactona/aislamiento & purificación , Animales , Bahías , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Comoras , Espectroscopía de Resonancia Magnética , Estructura Molecular , Fosfolípidos/química , Fosfolípidos/aislamiento & purificación , Piperazinas/química , Piperazinas/aislamiento & purificación , Poríferos/metabolismo
12.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36670912

RESUMEN

Aloe plant species have been used for centuries in traditional medicine and are reported to be an important source of natural products. However, despite the large number of species within the Aloe genus, only a few have been investigated chemotaxonomically. A Molecular Network approach was used to highlight the different chemical classes characterizing the leaves of five Aloe species: Aloe macra, Aloe vera, Aloe tormentorii, Aloe ferox, and Aloe purpurea. Aloe macra, A. tormentorii, and A. purpurea are endemic from the Mascarene Islands comprising Reunion, Mauritius, and Rodrigues. UHPLC-MS/MS analysis followed by a dereplication process allowed the characterization of 93 metabolites. The newly developed MolNotator algorithm was usedfor molecular networking and allowed a better exploration of the Aloe metabolome chemodiversity. The five species appeared rich in polyphenols (anthracene derivatives, flavonoids, phenolic acids). Therefore, the total phenolic content and antioxidant activity of the five species were evaluated, and a DPPH-On-Line-HPLC assay was used to determine the metabolites responsible for the radical scavenging activity. The use of computational tools allowed a better description of the comparative phytochemical profiling of five Aloe species, which showed differences in their metabolite composition, both qualitative and quantitative. Moreover, the molecular network approach combined with the On-Line-HPLC assay allowed the identification of 9 metabolites responsible for the antioxidant activity. Two of them, aloeresin A and coumaroylaloesin, could be the principal metabolites responsible for the activity. From 374 metabolites calculated by MolNator, 93 could be characterized. Therefore, the Aloe species can be a rich source of new chemical structures that need to be discovered.

13.
Talanta ; 225: 121925, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592802

RESUMEN

Untargeted LC-MS based metabolomics is a useful approach in many research areas such as medicine, systems biology, environmental sciences or even ecology. In such an approach, annotation of metabolomes of non-model organisms remains a significant challenge. In this study, an analytical workflow combining a classical phytochemical approach, using the isolation and the full characterization of the chemical structure of natural products, together with the use of MS/MS-based molecular networking with various levels of restrictiveness was developed. This protocol was applied to the marine brown seaweed Taonia atomaria, a cosmopolitan algal species, and allowed to annotate more than 200 metabolites. First, the algal organic crude extracts were fractionated by flash-chromatography and the chemical structure of eight of the main chemical constituents of this alga were fully characterized by means of spectroscopic methods (1D and 2D NMR, HRMS). These compounds were further used as chemical standards. In a second step, the main fractions of the algal extracts were analyzed by UHPLC-MS/MS and the resulting data were uploaded to the Global Natural Products Social Molecular Networking platform (GNPS) to create several molecular networks (MNs). A first MN (MN-1) was built with restrictive parameters and allowed the creation of clusters composed by nodes with highly similar MS/MS spectra. Then, using database hits and chemical standards as "seed" nodes and/or similarity between MS/MS fragmentation pattern, the main clusters were easily annotated as common glycerolipids and phospholipids, much rare lipids -such as acylglycerylhydroxymethyl-N,N,N-trimethyl-ß-alanines or fulvellic acid derivatives- but also new glycerolipids bearing a terpene moiety. Lastly, the use of less and less constrained MNs allowed to further increase the number of annotated metabolites.


Asunto(s)
Metaboloma , Algas Marinas , Cromatografía Liquida , Metabolómica , Fitoquímicos , Espectrometría de Masas en Tándem
14.
Molecules ; 27(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35011341

RESUMEN

The term cosmetopoeia refers to the use of plants in folks' cosmetics. The aerial parts of Bidens pilosa L., the leaves of Calophyllum inophyllum L. and the fruits of Fagraea berteroana A.Gray ex Benth are traditionally used in French Polynesia for hair and skin care. During the hair cycle, dermal papilla cells and their interaction with epithelial cells are essential to promote hair follicle elongation. The aim of our investigations was the identification of metabolites from these three plants and chemical families responsible for their hair growth activity. A bioactivity-based molecular network was produced by mapping the correlation between features obtained from LC-MS/MS data and dermal papilla cell proliferation, using the Pearson correlation coefficient. The analyses pointed out glycosylated flavonols and phenolic acids from B. pilosa and C. inophyllum, along with C-flavonoids, iridoids and secoiridoids from F. berteroana, as potential bioactive molecules involved in the proliferation of hair follicle dermal papilla cells. Our results highlight the metabolites of the plant species potentially involved in the induction of hair follicle growth and support the traditional uses of these plants in hair care.


Asunto(s)
Folículo Piloso/citología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fraccionamiento Químico , Cromatografía Líquida de Alta Presión , Humanos , Modelos Teóricos , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
15.
Molecules ; 25(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977422

RESUMEN

Hair loss is becoming increasingly prevalent as dietary and living habits change. The search for natural products to limit hair loss has led to tapping into traditional cosmetic knowledge. We studied three plants of the Polynesian cosmetopoeia, Bidens pilosa, Calophyllum inophyllum and Fagraea berteroana, to determine their ability to promote hair growth. Their chemical content was characterized by liquid chromatography coupled to mass spectrometry (LC-MS). Their proliferative activity on dermal papilla cells (DPCs) was assessed via MTT assay and molecular targets were evaluated by RT-qPCR analysis of seven factors involved in the modulation of the hair cycle, CCND1, LEF1, DKK1, WNT5A PPARD, TGFΒ1, PPARD and RSPO2. Our results show that our extracts significantly increased proliferation of dermal papilla cells. Furthermore, LC-MS/MS analysis revealed a diversity of molecules, flavonoids, iridoids and organic acids, some known for hair-inducing properties. Finally, specific extracts and fractions of all three plants either upregulated CCND1, LEF1 and PPARD involved in stimulating hair follicle proliferation and/or lowered the gene expression levels of hair growth inhibiting factors, DKK1 and TGFB1. Our findings suggest that extracts from B. pilosa, C. inophyllum and F. berteroana are interesting candidates to stimulate hair growth.


Asunto(s)
Dermis/citología , Dermis/efectos de los fármacos , Folículo Piloso/efectos de los fármacos , Folículo Piloso/crecimiento & desarrollo , Extractos Vegetales/farmacología , Tracheophyta/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Folículo Piloso/citología , Humanos , Vía de Señalización Wnt/efectos de los fármacos
16.
Front Microbiol ; 11: 494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32269559

RESUMEN

Marine macroalgae constitute an important living resource in marine ecosystems and complex ecological interactions occur at their surfaces with microbial communities. In this context, the present study aimed to investigate how the surface metabolome of the algal holobiont Taonia atomaria could drive epiphytic microbiota variations at the thallus scale. First, a clear discrimination was observed between algal surface, planktonic and rocky prokaryotic communities. These data strengthened the hypothesis of an active role of the algal host in the selection of epiphytic communities. Moreover, significant higher epibacterial density and α-diversity were found at the basal algal parts compared to the apical ones, suggesting a maturation gradient of the community along the thallus. In parallel, a multiplatform mass spectrometry-based metabolomics study, using molecular networking to annotate relevant metabolites, highlighted a clear chemical differentiation at the algal surface along the thallus with similar clustering as for microbial communities. In that respect, higher amounts of sesquiterpenes, phosphatidylcholines (PCs), and diacylglycerylhydroxymethyl-N,N,N-trimethyl-ß-alanines (DGTAs) were observed at the apical regions while dimethylsulfoniopropionate (DMSP) and carotenoids were predominantly found at the basal parts of the thalli. A weighted UniFrac distance-based redundancy analysis linking the metabolomics and metabarcoding datasets indicated that these surface compounds, presumably of algal origin, may drive the zonal variability of the epibacterial communities. As only few studies were focused on microbiota and metabolome variation along a single algal thallus, these results improved our understanding about seaweed holobionts. Through this multi-omics approach at the thallus scale, we suggested a plausible scenario where the chemical production at the surface of T. atomaria, mainly induced by the algal physiology, could explain the specificity and the variations of the surface microbiota along the thallus.

17.
Ecol Evol ; 9(14): 8201-8213, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31380083

RESUMEN

The Mediterranean region is recognized as a global biodiversity hotspot. However, over the last decades, the cessation of traditional farming in the north part of the Mediterranean basin has given way to strong afforestation leading to occurrence of abandoned agricultural lands colonized by pioneer expansionist species like Pinus halepensis. This pine species is known to synthesize a wide range of secondary metabolites, and previous studies have demonstrated strong allelopathic potentialities of its needle and root leachates. Pinus halepensis is also recognized to release significant amounts of volatile organic compounds (VOC) with potential allelopathic effects that have never been investigated. In this context, the objectives of the present study were to improve our knowledge about the VOC released from P. halepensis needles and roots, determine if these VOC affect the seed germination and root growth of two herbaceous target species (Lactuca sativa and Linum strictum), and evaluate if soil microorganisms modulate the potential allelopathic effects of these VOC. Thirty terpenes were detected from both, needle and root emissions with ß-caryophyllene as the major volatile. Numerous terpenes, such as ß-caryophyllene, δ-terpinene, or α-pinene, showed higher headspace concentrations according to the gradient green needles < senescent needles < needle litter. Seed germination and root growth of the two target species were mainly reduced in presence of P. halepensis VOC. In strong contrast with the trend reported with needle leachates in literature, we observed an increasing inhibitory effect of P. halepensis VOC with the progress of needle physiological stages (i.e., green needle < senescent needle < needle litter). Surprisingly, several inhibitory effects observed on filter paper were also found or even amplified when natural soil was used as a substrate, highlighting that soil microorganisms do not necessarily limit the negative effects of VOC released by P. halepensis on herbaceous target species.

18.
Phytochemistry ; 162: 165-172, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30925377

RESUMEN

Among comparative metabolomic studies used in marine sciences, only few of them are dedicated to macroalgae despite their ecological importance in marine ecosystems. Therefore, experimental data are needed to assess the scopes and limitations of different metabolomic techniques applied to macroalgal models. Species of the genus Lobophora belong to marine brown algae (Family: Dictyotaceae) and are widely distributed, especially in tropical coral reefs. The species richness of this genus has only been unveiled recently and it includes species of diverse morphologies and habitats, with some species interacting with corals. This study aims to assess the potential of different metabolomic fingerprinting approaches in the discrimination of four well known Lobophora species (L. rosacea, L. sonderii, L. obscura and L. monticola). These species present distinct morphologies and are found in various habitats in the New Caledonian lagoon (South-Western Pacific). We compared and combined different untargeted metabolomic techniques: liquid chromatography-mass spectrometry (LC-MS), nuclear magnetic resonance (1H-NMR) and gas chromatography (GC-MS). Metabolomic separations were observed between each Lobophora species, with significant differences according to the techniques used. LC-MS was the best approach for metabotype distinction but a combination of approaches was also useful and allowed identification of chemomarkers for some species. These comparisons provide important data on the use of metabolomic approaches in the Lobophora genus and will pave the way for further studies on the sources of metabolomic variations for this ecologically important macroalgae.


Asunto(s)
Metabolómica/métodos , Phaeophyceae/metabolismo , Algas Marinas/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía de Resonancia Magnética
19.
J Proteome Res ; 16(5): 1962-1975, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28362105

RESUMEN

Most marine bacteria can form biofilms, and they are the main components of biofilms observed on marine surfaces. Biofilms constitute a widespread life strategy, as growing in such structures offers many important biological benefits. The molecular compounds expressed in biofilms and, more generally, the metabolomes of marine bacteria remain poorly studied. In this context, a nontargeted LC-MS metabolomics approach of marine biofilm-forming bacterial strains was developed. Four marine bacteria, Persicivirga (Nonlabens) mediterranea TC4 and TC7, Pseudoalteromonas lipolytica TC8, and Shewanella sp. TC11, were used as model organisms. The main objective was to search for some strain-specific bacterial metabolites and to determine how culture parameters (culture medium, growth phase, and mode of culture) may affect the cellular metabolism of each strain and thus the global interstrain metabolic discrimination. LC-MS profiling and statistical partial least-squares discriminant analyses showed that the four strains could be differentiated at the species level whatever the medium, the growth phase, or the mode of culture (planktonic vs biofilm). A MS/MS molecular network was subsequently built and allowed the identification of putative bacterial biomarkers. TC8 was discriminated by a series of ornithine lipids, while the P. mediterranea strains produced hydroxylated ornithine and glycine lipids. Among the P. mediterranea strains, TC7 extracts were distinguished by the occurrence of diamine derivatives, such as putrescine amides.


Asunto(s)
Bacterias/citología , Técnicas de Tipificación Bacteriana/métodos , Metabolómica/métodos , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Biopelículas , Biomarcadores/análisis , Cromatografía Liquida , Biología Marina , Espectrometría de Masas en Tándem
20.
Sci Rep ; 7: 42625, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28218290

RESUMEN

Mediterranean Sea ecosystems are considered as hotspots of biological introductions, exposed to possible negative effects of non-indigenous species. In such temperate marine ecosystems, macroalgae may be dominant, with a great percentage of their diversity represented by introduced species. Their interaction with temperate indigenous benthic organisms have been poorly investigated. To provide new insights, we performed an experimental study on the interaction between the introduced proliferative red alga Asparagopsis taxiformis and the indigenous Mediterranean coral Astroides calycularis. The biological response measurements included meta-barcoding of the associated microbial communities and metabolomic fingerprinting of both species. Significant changes were detected among both associated microbial communities, the interspecific differences decreasing with stronger host interaction. No short term effects of the macroalga on the coral health, neither on its polyp activity or its metabolism, were detected. In contrast, the contact interaction with the coral induced a change in the macroalgal metabolomic fingerprint with a significant increase of its bioactivity against the marine bacteria Aliivibrio fischeri. This induction was related to the expression of bioactive metabolites located on the macroalgal surface, a phenomenon which might represent an immediate defensive response of the macroalga or an allelopathic offense against coral.


Asunto(s)
Antozoos/microbiología , Antozoos/fisiología , Metaboloma , Metabolómica , Interacciones Microbianas , Microbiota , Algas Marinas/fisiología , Animales , Metabolómica/métodos , Agua de Mar/química , Espectrometría de Masa por Ionización de Electrospray , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...